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Abstract. We study the input impedance of a chain of random resistors chosen according 
to a 'broad' distribution (i.e. decaying as a power law for large arguments). As a function 
of frequency, the modulus of the input impedance varies as a power law, while its phase 
has a well defined value. A simple theoretical analysis, based on estimations of sums of 
random variables, yields the value of the exponents which are in perfect agreement with 
numerical simulations, even when logarithmic corrections come into play. The analysis 
can be extended further to investigate the sample to sample fluctuations of the impedance. 
Again, agreement with simulations is very good. 

1. Introduction 

Asymptotically non-Gaussian diffusion or dispersion represents the simplest example 
of a non-mean-field (critical) phenomenon [ 1,2]. The two basic mechanics responsible 
for such behaviour are: 

( a )  the presence of broadly distributed events, for which some of the moments 
(for example their mean or their variance) fail to exist; 

( b )  the presence of long range correlations-which are usually self induced- 
associated with the lack of a characteristic length or time scale [2]. 

A very simple example of a non-diffusive random walk is provided by a one- 
dimensional line with a broad distribution of either the local (symmetrical) hopping 
rates (case A) or the local trapping times (case B): this corresponds, in an electrical 
analogue, to a chain of impedances (see figure 1) containing an anomalously large 

Figure 1. One-dimensional chain of impedances with random resistors. 
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number of either high resistances ( A )  or large capacitances (B). In this diffusion 
problem, we seek to determine the probability P( n, t )  for the presence of a particle at 
site number n :  the corresponding variable in the electrical analogy is the distribution 
of charges in the chain. 

In this paper, we study the chain of impedance cells represented in figure 1 (all 
the capacitances are equal to a value C);  the values R, of the resistors are chosen at 
random according to the algebraic law: 

p ( R )  = I*/  Ro(Rol R)"'"' ( P  > 0) for R > R, ( 1 0 )  

P ( R )  = 0 for R < Ro. (1b)  

p (  R )  dR is the probability for a given resistor to have a value between R and R + dR. 
The quantities of interest are as follows. 

For the diffusion problem: the time dependence of the typical position of the 
diffusing objects, the full shape P( n, t )  of the diffusion front and its fluctuations [see 
2, ch 111 

For the electrical problem, the variations with the frequency w of the end-to-end 
impedance (i.e. the ratio of the input voltage to the output current) and of the complex 
admittance A ( w )  (i.e. the ratio of the input current to the input voltage). This latter 
quantity strongly depends on the particular realisation of the disorder. We shall thus 
study here the average of the logarithm of the admittance, leading to a well defined 
amplitude and phase. The mean value and the fluctuations of the phase will also be 
discussed. 

2. Theoretical background 

If (and only if) only the resistors are random, a powerful theorem [2,3] (valid for all 
lattice dimensionalities) states that the infinite time diffusion coefficient D (if it exists) 
is proportional to the zero frequency average end-to-end conductance U. Nevertheless, 
as we shall show now, the properties of the diffusion problem can be used to obtain 
information on the electrical network even at finite frequencies or when D is zero 
(anomalous diffusion). 

For the problem considered here, the average conductance U in the limit of an 
infinitely long chain of impedance cells may or may not exist, depending on the value 
of W .  

For > 1, U is finite and equal to 
X l L  

U-' = lim - R, = (R)  = Rp( R )  dR < +a. 
L - x  L ,=, 0 

In contrast, for p < 1 ,  (R)  is infinite and a ( L )  goes to zero as the length L of the 
chain tends towards infinity. Let us limit ourselves to a finite number L of elements 
and estimate the largest resistor R,,,( L) among them: then we shall use RmaX( L) as 
the upper bound in the integral of equation (2)  which will give an effective mean value 
of the resistance for a chain of finite length. Using equation ( l ) ,  the probability 
P+(Rmax) that one resistor is larger than a value R,,, is 

X 

p+(Rmax) = I p ( R )  dR (Ro/Rmax)F. 
R m a x  
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Therefore, in a series of L resistors, the largest value R,,, is such that [4, 2 (appendix 
B)1 

P+(Rmd,)L- 1 so that R,,,( L )  a L' II. 

Thus: 

Hence, provided that R,,, >> R,: 

a-'( L )  a LI(p-1 for p < 1 

U - ' ( L )  a log L for p = 1. ( 3 b )  

More precisely, L U - ' ( L ) / L ' ' ~  has a limit distribution when L+OC which is a Levy 
(stable) law: see section 4 and [4, 2 (appendix B)]. 

If diffusion has taken place over a finite length x after a time lapse t ,  one can define 
an  effective 'finite size diffusion coefficient' D ( x )  by 

x 2 =  D ( x ) t .  (4) 

The proportionality between D and a resulting from the theorem discussed above can 
be argued to hold for D ( x )  and a ( x )  so that one obtains by taking x = a L  in equations 
( 3 4  b )  ( a  being the length of one cell): 

D ( x ) a  U ( x ) a x I - I  for p < 1 ( 5 a )  

D ( x ) a a ( x ) a ( l o g  XI- '  for p = 1. ( 5 b )  

for p < 1 ( 6 a )  xa t P / " + ' l '  

X = d i p Z  for p = 1 ( 6 b )  

xoc t 1 ' 1  for p > 1. ( 6 ~ )  

Therefore the diffusion distance x of a particle in such a medium satisfies 

In  the latter case a ( x )  reaches a constant value independent of x as soon as x is large 
enough and  one has a normal diffusion law; on the other hand, for p s 1, diffusion is 
anomalously slow (x < t"'). The results of equation (6) are exact, as can be checked 
by a variety of other methods [5,6], and  coincide in one dimension with the one 
obtained for diffusion among traps (e.g. capacitances) with trapping times distributed 
according to a law: p (  T )  

If one now turns to the random resistor chain, the diffusion law (6) essentially 
means that, if the input voltage oscillates at a frequency w,  the charges move into the 
chain only up  to a penetration depth A ( w  ) such that: 

T-('+*). 

1 
A ( w ) a - -  ( p  > 1). J;; 

One obtains equations (7)  by taking w = l / t  in equations (6) and  taking for wo the 
highest characteristic frequency in the problem: in our case, wo is of order of l /RoC. 
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Let us measure the admittance A( w )  of the chain of resistors and capacitors between 
its input and the ground connection (figure 1): the chain appears as a combination of 
A ( w ) / a  random resistors in series and A ( w ) / a  constant capacitors in parallel. For 
p 3 1, the total resistive part is 

where the effective mean resistance u - ' ( A ( w ) / a )  is given by equation (3). Then, using 
equation (7) to compute A ( w ) :  

for p < 1  ( 8 a )  

1 / 2  1 w 
for p = 1  (86) 

A ( w )  In Re A( w )  a 

for p > 1, Re A ( w )  is of the order of h ( w )  times the mean resistance ( R )  in the chain 
which is, in this case, independent of w so that, from equation (7),  

Re A ( w ) a  l / A ( w )  cc ( 8 c )  
Since all capacitors are identical, the reactive part of the admittance simply verifies 

Im A(w) - A(w)Cw 
so that, using again equations (7): 

Im A(w)awl ' l+F  for p < 1 (9a 1 

ImA(w)a (z ) l i2  In w o / w  for p = 1 (96) 

Im A( U )  a w 1 / 2  for p > 1. (9c) 
All the equations ( 8 )  and (9) have to be understood in the sense of typical value, 

which here should be identified with the behaviour of exp[(ln A ) ] .  
We have thus shown, using simple arguments on sums of broadly distributed 

variables, that the admittance of a highly disordered chain scales with an anomalous 
power of the frequency when p < 1. These arguments provide the value of the exponent 
(Y and show that the real and imaginary part of the admittance follow the same scaling 
law with frequency given by equations (8) and (9) .  

As shown very elegantly by Mitescu er a1 [7,13], one can relate the phase cp of the 
complex admittance A ( o )  to the exponent (Y by using the analyticity properties of 
A( U ) :  the relation applies to all networks containing resistors, capacitors and inductors 
in any kind of pattern and its physical meaning is similar to that of the Kramers-Kronig 
relations. The key point is that, in the equations relating the complex voltages and 
intensities in the network, the frequency w appears only through the product j w  (the 
complex admittances of a capacitor and an inductance are respectively l/jCw and 
jL(w). These j factors are the only complex coefficients appearing in the relation; 
therefore, the admittance A(w) between two points (figure 1) verifies: A(@) =f( ju)  
where f is a real function (containing only real parameters) of the complex variable 
j w .  If IA(w)l is proportional to a power woI of w in a given range of frequencies, then 
necessarily: 

A(w) = IA(w)l e'' = A o ( j w ) "  = A o  eJ*woI 
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and 

T 
q = a -  

2 

where A. is a real constant and cp is the phase of the complex admittance A ( w ) .  Then: 

T 

c p = i  
if a = 1/2 (as for /I > 1) 

The phase cp is thus entirely determined by the diffusion exponent except for I.L = 1; 
in this case, one expects the phase to vary with frequency since no exact power law 
is verified. 

Before going into the numerical part of this work, let us comment on the interest 
of investigating this model. 

( a )  It represents a ‘toy model’ for which the anomalous behaviour of the admitt- 
ance, occurring in other more complex situations (such as for 2~ percolation networks 
[8, 131 and in acoustic experiments on rocks or for conducting polymers) can be fully 
understood by simple arguments. One could have obtained expressions (8,9) in another 
way by using a scaling assumption on A(@,  L): 

A ( w ,  L) = A(O, L ) f ( A ( w ) / L )  

and by requiring that, for A (U )<<  L, A(w,  L )  no longer depends on L. The fact that 
the two methods give the same result in the present case justifies the use of scaling for 
other systems. 

(b)  More subtle quantities, related to anomalous statistics of broad distributions, 
can be analysed numerically. In particular, we shall find quantities which undergo 
‘phase transitions’ at different values of p [9]: for instance, we shall analyse the 
dependence of the probability distribution of the phase cp for different frequency and 
p values. A qualitative understanding of the fluctuations of the phase can be obtained 
(section 4): however, a quantitative treatment of this one-dimensional system (generalis- 
ing existing work in localisation theory [lo, 11, 141 is not yet available. 

( c )  From a practical point of view, the system analysed in the present paper is 
easy to investigate numerically: it nevertheless displays several features also encoun- 
tered in more complex disordered systems. Even though one deals with very broad, 
‘pathological’ distributions, we shall see that the admittance exponent and the phase 
coincide precisely with the theoretical values; the logarithmic correction term is also 
very clearly identified. 

3. Numerical simulations 

We have performed a numerical simulation in the case of the ID chain of RC cells 
shown in figure 1. All capacitors are identical to a value C = The random 
resistor values R (  n )  are chosen so that their probability distribution verified equation 
(1). Practically, R ( n )  is obtained by drawing a random number x ( n )  in the range 0 
to 1 and taking R (  n) = Rox( n ) - ” ”  where Ro = 10. The values of C and Ro have been 
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chosen to give a range of frequency values allowing for comparisons with analogue 
model systems [8]. 

We then compute the frequency variation for the complex admittance A ( w )  between 
the end of the first resistor and the common ground. A ( w )  is determined by a transfer 
matrix technique: for each cell R ( n ) ,  C we compute the matrix relating the inlet 
current and voltage I (  n )  and V ( n )  to the outlet values I (n  + 1) and  V ( n  + 1). These 
various transfer matrices are multiplied and the boundary conditions at the end point 
of the chain are introduced (open circuit (oc) or  short circuit (cc)) .  Careless matrix 
multiplications lead quickly to numerical overflows for chain lengths as low as 50 cells: 
therefore the four elements of the products are multiplied by a same constant whenever 
needed. We keep track of these multiplicating factors which may be good indicators 
of the propagation of the diffusive wave into the chain. Except for p =cc (where R 
is constant), we average the values of log lA(w)l and of the phase p over many random 
choices of the set of resistors; the typical number of averages was 250 except for the 
critical case p = 1 where 1000 realisations were performed. 

3.1. Qualitative characteristics of the variations of the complex admittance 

Figures 2 ( a )  and ( b )  display respectively the variations of the modulus and the phase 
of the impedance of a chain of N = 50 000 identical resistors and  capacitors ( p  = CO).  

The variations corresponding to open circuit and  short circuit boundary conditions 
have been superimposed. At low values of the pulsation w (In w < 0), the lattice 
behaves as a single capacitor of capacitance N C  (oc case) or  as a single resistor of 
resistance N R  (cc  case); the corresponding limiting values of A ( w )  are respectively 
1 / (  N R )  and j N C w  with respective phases 0 and  90". When w increases, the penetration 
depth of the wave becomes of the order of the chain length and a damped pseudoreson- 
ance is observed (1 <In  w < 3).  At still higher w (3 < In w < 8)  the open circuit and  
short circuit curves become identical: l A ( w ) l  varies as (slope 1 / 2  in the log-log 
plot) and the phase 9 is close to 45" as expected from equation ( l l a ) .  These two 
features are characteristic of the normal diffusion regime where the penetration depth 
decreases as w - " ~ .  In the upper range of w values (In w > 8)  the penetration depth 
is only one cell and A ( w )  has a limit value 1/ R with a phase p = 0. In the rest of the 
discussion, we shall be concerned with the diffusive region. 

The overall qualitative features of the curves remain the same when p decreases 
but remains higher than 1. The mean slope S of IA(w)l in log-log coordinates in the 
linear part of the curve remains very close to 0.5 as can be seen in table 1. When 
p = 1, an upward curvature of the curve is observed as expected from the prediction 

of equation ( 8 b )  (figure 3 ( a ) ) .  
For p < 1, one observes a clear anomalous diffusion: as in the previous case, the 

variation of loglA(w)l with w is linear (as shown in figure 3 ( b )  for p =0.5) but the 
slope is higher than 0.5. 

Table 1 and  figure 4 ( a )  display the variations with p of the slope S of numerical 
simulation curves such as those of figures 2 ( a )  and 3 in the diffusion regime: we have 
shown for comparison the theoretical value S, ,  = 1 / (  1 + p )  (for p < 1). Let us point 
out that the two curves are slightly separated around the transition value p = 1. Outside 
ofthis range, both values agree to within 1% down to p = 0.5 and to 2% down t o p  = 0.25. 
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Log w 

Figure 2. Frequency behaviour of the impedance in the 'pure' case ( p  =x);  ( a )  amplitude; 
( b )  phase. 

- 
Similar features are observed qualitatively on the variations of the phase p ( w )  with 

frequency at different p values (figure 5(a, b ) ) .  For all values of p > 2 ,  the variation 
of p ( w )  with w is almost the same. p ( w )  is close to 45" in the low frequency part of 
the diffusive region; it decreases at higher frequencies because of the influence of the 
discrete structure of the model (figure 5 ( a ) ) .  For 1 < p < 2 ,  there is an  upward deviation 
(by about 1" for p = 4/3) at high frequencies from that common variation: this deviation 
increases as p gets closer to 1. For p < 1, p ( w )  becomes larger than 45" but the 
uncertainty in its value increases very fast as p gets lower (such as for p = 0.5 in figure 
5 ( b ) ) .  

Let us analyse now the variation with the parameter p of the mean phase p ( w )  in 
the diffusive regime. In order to obtain meaningful results and due  to the large 
dispersion of the numerical values at high degrees of disorder, we averaged cp(w) over 
5000 realisations of the lattice; p ( w )  is computed at four different frequencies in the 
diffusive range to estimate the dispersion of the results. Table 2 and figure 4( 6 )  display 
the variations with p of p ( w )  for the lowest of the four frequencies compared with 

- - 

- 

- 

- 
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Table 1. Slope of the variation of the admittance modulus with frequency in log-log 
coordinates. 

Slope of loglA(w) l  

cr / . - I  Numerical Theoretical 

cc 
10 
3.33 
2.22 
2 
1.818 
1.538 
1.333 
1.111 
0.8 
0.666 
0.571 
0.5 
0.4 
0.333 
0.286 
0.25 

0 
0.1 
0.3 
0.45 
0.5 
0.55 
0.65 
0.75 
0.9 
1.25 
1.5 
1.75 
2.0 
2.5 
3.0 
3.5 
4.0 

0.498 
0.498 
0.497 
0.497 
0.498 
0.498 
0.500 
0.505 
0.499 
0.554 
0.596 
0.635 
0.656 
0.706 
0.743 
0.769 
0.793 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5555 
0.600 
0.6364 
0.666 
0.7142 
0.750 
0.7777 
0.800 

the theoretical value ~ / 2 (  1 + p ) :  this choice of frequency allows us to reduce finite 
size effects since the effective investigation depth is then largest. As for the slope S,  
the largest deviation from theory occurs near the transition value p = 1; in this case, 
too, we think that this corresponds to a broadening of the transition due to the finite 
size of the lattice used. It is also around p = 1 that the variations of the mean phase 
with frequency are highest. Far from the critical value p = 1, the agreement between 
the theoretical and experimental values of q ( w )  is strikingly good, particularly at high 
disorders inspite of the large scatter of individual values (the error is generally less 
than 5%). 

We have therefore shown numerically that main features such as the exponent of 
the variation of j A ( w ) l  with frequency or the mean phase value are in excellent 
agreement with the theoretical model. Let us now investigate more closely the critical 
features of the variations of the impedance near the threshold value p = 1 which 
appeared above. 

3.2. Quantitative critical behaviour of the complex admittance near the threshold value 
p = l  

In order to get more precise results, we have plotted in figure 6 ( a )  the variation of 
w / l A ( w ) l 2  as a function of w in semilogarithmic coordinates for five values of p = 1, 
1.11, 1.205, 1.33 and 1.538. While, for p = 1.538, the ratio is almost constant in the 
whole diffusive range, a clear linear variation is observed for p = 1 with 

W 2.15 x 1013 -- -2.28 x 1 0 ' ~ -  1.71 x l o i3  log,, = 1.71 x 1013 log,, 
lA (w) l  w 



Strongly disordered chain of impedances 

I 

1093 

log w 

Figure 3. ( a )  Amplitude of the input impedance against frequency in a log-log plot for 
+ = 1. Note the deviation from a straight line, indicating logarithmic corrections. ( b )  
amplitude of the input impedance against frequency in a log-log plot for cc = 0.5. 

The parameter w,, = 2.15 x l O I 3  is, as suggested above, of the order of the characteristic 
frequency for an individual RC cell. At the two intermediate values p = 1.11 and 
p = 1.205, w / l A ( w ) l *  is constant at low frequencies and decreases linearly with log w 
above a threshold frequency which gets lower as p goes towards 1. This is an indication 
of a broadening of the transition due to finite size effects and to the large width of the 
resistor distribution. 

In order to make a similar analysis at p < 1, we have plotted in figure 6 ( b )  the 
variation of w / l A ( w ) l ” ”  for p = 1.0, 0.952, 0.909, 0.854, 0.8 and 0.666; it would be a 
constant if IA(w) l  obeyed exactly the theoretical anomalous diffusion law. We notice 
that the variation of shape of the curves as p decreases away from the transition is 
analogous to that observed in figure 6 ( a ) .  For p <0.65, the ratio o / lA(w) l””  almost 
constant; for the values of p between 0.8 and 0.95, it decreases logarithmically at high 
frequencies and is constant at low ones. The pretransitional effects are therefore 
symmetrical with respect to the transition p = 1 and are present in a limited range of 
p values (typically 0.65 to 1.5). 
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I 

I I I 
0 1 2 3 

1 4  

Figure 4. Numerical determination of the exponent d l o g A / d l o g w  and of the phase 
(crosses), compared with the theoretical prediction (full curves and dots). Note the finite 
size effects, rounding off the transition around = 1.  

4. Probability distribution of the phase of the admittance of the disordered system 

4.1. Numerical results 

Figures 7 ( a ,  b, c, d )  shows the probability density distributions of the phase q ( w )  at 
four different values of the parameter p = 2.0, 1.0, 0.57 and 0.25. For each p vaiue, 
the histogram has been computed at four frequencies distributed over the diffusive 
domain. 

At low degrees of disorder ( p  > 2.0) the probability distribution is approximately 
Gaussian (except at high frequencies where it becomes asymmetrical) and the width 
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log w 

Figure 5. Variation of the average phase with frequency for several values of ,U: in ( a ) ,  
the numbers labelling the different curves are equal to p-', and in ( b ) ,  ,U =0.5. 

decreases with frequency (figure 7(a)).n order to analyse this last effect, we have 
computed the mean square deviations Acp' of the p h m o f  the admittance in our set 
of realisations. Figure 8 ( a )  displays the variation of AQ* with frequency for different 
values of p. We see that @ is proportional to for p > 2 .  Between p = 0.65 and 
p = 2 ,  @is roughly proportional to w x  where x gets smaller as p decreases (however, 
due to the curvature of the curves, x is probably not constant). In this range the phase 
distribution is roughly Gaussian (figure 7 ( b ) ) .  At lower p values s0 .65  (for instance 
p = 0.57 in figure 7 ( c ) ) ,  the values of cp(w) are spread over most of the total possible 
range (0-7r/2) and the variation of @ with frequency is very slow (figure 8(c)) .  At 
very large disorders (figure 7 ( d ) ) ,  the maximum of the distribution occurs at cp = ~ / 2  
with a tail at lower phase values: the tail has a smaller amplitude and decays slower 
when p increases. Figure 8 ( b )  displays the variation with 1 / p  of the effective exponent 
x obtained from a linear regression on the data of figure 8 ( a ) :  x is of the orderof 0.5 
above p = 2.0, then it decreases steadily to zero at p = 0.7. This show that hcp2 takes 
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Table 2. Variation of the first moment of the phase probability distribution with g compared 
with the theoretical value. 

] . I F  Phase (experimental) Phase (theoretical) cc 

10 
3.333 
2 
1.538 
1.333 
1.204 
1.176 
1.086 
1 
0.909 
0.8 
0.666 
0.571 
0.5 
0.4 
0.333 
0.25 

0.1 
0.3 
0.5 
0.65 
0.75 
0.83 
0.85 
0.92 
1 
1.1 
1.25 
1.5 
1.75 
2 
2.5 
3 
4 

45.000 
44.945 
44.969 
45.070 
45.239 
45.635 
45.719 
46.297 
47.105 
48.432 
50.016 
54.161 
57.320 
59.848 
64.343 
67.196 
72.272 

45 
45 
4.5 
4.5 
4.5 
45 
45 
45 
45 
47.142 
50 
54 
51.272 
60 
64.285 
67.5 
72 

an anomalous behaviour for a lower degree of disorder (corresponding to a threshold 
p = 2.0) than the average cp(w). Let us now theoretically investigate this problem. 

- 

4.2. Theoretical analysis of the phase distribution 

It is a generic feature of a disordered system to exhibit different critical ‘points’ where 
different physical quantities become singular [9]. The reason for this is quite simple: 
if these quantities (like, e.g., the velocity and diffusion constant in a random walk 
problem) are the moments of a certain observable y and if this observable is broadly 
distributed according to p ( y ) = y - ( ’ + + ) ,  then all moments ( y “ )  with n > p  will be 
infinite, and thus lead to ‘anomalous’ behaviour. The analysis of the phase fluctuations 
will show that the simple statistical reasoning of section 2 can indeed be carried quite 
far. Let us recall some properties of the following sum (which have been used in 
section 2):  

for N large and with y ,  distributed according to p ( y )  (and y ,  > 0 for simplicity, see 
[4, 2 (appendix B)] for a more general discussion). 

(a) p ( 1 .  The quantity Z = YN-”j’  has a well defined limit distribution L , ( Z )  
where L, is a ‘Levy’ distribution defined by 

, Cdt1.x 

L , ( Z )  =- ’ J dsexp[sZ-Csj’]. 
2irr d - , r  

L, itself decays asymptotically as Z-‘’Tp’. This essentially means that Y is of order 
N’”” with fluctuations of the same order of magnitude. 



Strongly disordered chain of impedances 1097 

3 

h 

I, \ l / U . l . O  

Figure 6. The logarithmic correction for p = 1 clearly evidenced by plotting w / A ’  or 
U/”+’’ against log w for different values of p (the numbers given are again p - ’ )  y = 
2.277 x 1014 - 1.714 x lOI3x. 

(b) 1 <p (2 .  The quantity which has now a well defined limit distribution is 
2 = ( Y - ( y ) N ) / N ” @  (this limit distribution is defined similarly to that above-see 
[4,2, appendix B]). Thus, now Y is of order N and its fluctuations are of order 

(c) 2<p.  One recovers the usual central limit theorem, for which Z =  
( Y - ( y ) N ) /  N”’ is distributed according to a Gaussian, and hence the fluctuations 
are ‘normal’, of order m. 

For p = 1 or 2, logarithmic corrections come into play [4]. 
Returning to our electrical problem, this allows us to make somewhat more precise 

statements about the penetration depth A(o) and the admittance A ( w ) :  since we 
estimate 
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Figure 7. Phase distribution for different frequencies and  /* = i a i  2, i b )  1, ( c )  0.57, ( d )  
0.25; note that in ( a ) ,  the vertical scale is not the same for all frequencies. The Ridth of 
the distribution increases with frequency (since the penetration depth becomes smaller) ,  
as  U ' .  For strong disorder,  the width is of order  one  for any frequency ( x  = 0).  

the fluctuations of the admittance come from the intrinsic fluctuation of the sum plus 
the fluctuations of its number of terms A A :  

A '  @ + A A 1  Ir for p < 1 
for 1 < p < 2  
for p > 2. 

One has 
for p < 1 
for 1 < p < 2  
for p > 2  

_ -  AA-[ w ( @ - l l  211 

I ,  4 A 

which shows that (using the behaviour of A ( w )  of section 2 )  both sources of fluctuations 
are in fact of the same order of magnitude. Hence, finally, one has 

This explains quantitatively the numerical results on the frequency dependence of the 
variance of the phase (figure 7 and figure 8 where the theoretical exponent x = ( p  - 1 ) / p  
is compared with the numerical determination) and  quantitatively the shape of the 
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Figure 8. Exponent  x against p - ' :  squares are  numerical simulations, while the straight 
lines are  the theoretical predictions. Agreement is quite good for this more subtle quantity. 
Note however again the finite size effects around the two 'transitions', ,U = 1 and  p = 2. 

whole distribution of this phase. In particular, one understands why this distribution 
extends over [0, 7r] for p < 1 and is roughly Gaussian for p > 2 .  To compute precisely 
this distribution i s  far more difficult. 

Our result suggests the general scaling of the phase fluctuation with frequency for, 
e.g., the input impedance of percolation clusters (for which broad disorder is not 
introduced by hand), characterised by its fractal dimension dr and its 'spectral' 
dimension d , .  The mean value of the phase is known to be in that case [7 ,12,  131 
q = 7rd , /4df .  If the electrode i s  a point, then 

Sp(0,) = W d ,  

(since the number ot' resistors probed in a time t is td' '). If the electrode is a 'plane' 
of section L'- ' .  then 

-- ~ 1 1 - 4  1 W d , l d , - d + l l / 4 d ,  
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5. Conclusion 

We have investigated numerically the admittance of a strongly disordered chain of 
resistors and capacitors, and developed simple statistical arguments to understand the 
observed behaviour. Those arguments concern sums of broadly distributed random 
variables; they yield exponents which are in precise agreement with numerical data. 
They also justify in this case the use of a scaling approach. The strength of those 
simple arguments clearly appear when one deals with more subtle quantities such as 
the fluctuations of the loss angle, or logarithmic corrections to power laws, which are 
very satisfactorily accounted for. Two aspects should however be more precisely 
addressed. 

As is obvious from figures 4, 7 and 8, the numerically observed exponents depart 
from the theoretical prediction around the ‘transition points’ p = 1, p = 2: the transitions 
are clearly rounded off by finite size effects. A detailed investigation of those has not 
been undertaken. 

The full probability distribution of, e.g., the phase could perhaps be calculated for 
this one-dimensional model, as is the case for a very similar problem: the phase of 
the reflection coefficient for a wave arriving on a (one-dimensional) disordered medium 
[lo,  11, 141. 

Note finally that other electrical analogues of random walk problems would be 
worth investigating, in particular the ‘random force’ model which is equivalent to 
choosing C, random and R ,  = (C,C,+l)-l”. 

In this case C, = e  U t i ’ k J  where U is the potential from which is derived the force 
in the random walk problem. 
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